Lecture 8:Motifs and Motifs
finding

(with a section on Chip-Seq)
rinciples of Computational Biology

Teresa Przytycka, PhD
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Motifs

* Motif 1s a region (a subsequence) of protein
or DNA sequence that has a specific
structure

* Motifs are candidates for functionally
important sites

* Presence of a motif may be used as a base
of protein classification



Representation of motifs

 Profile or sequence logos
* Regular expression



Describing patterns using regular
expressions

A B
start <:;/‘ ~® end
B D

C
A graph like one above 1s called in CS literature a finite automaton can
be used do describe a sequence family (CS literature such a set of
sequences 1s called a language):

Take any path from “start” to “end” and as you go print the letters that
label the edges you used. Any sequence that can be printed 1n this way
will be called generated (CS term: accepted) by the automaton.

E.g.: ABCCCCD; BACCD:;.....



Regular expressions

A B
start <:;/‘ ~® end
B D

C
A finite automaton can be translated to so called regular expressions:

Notation:
[choicel, choice2,....] = a set of choices 1n a brunching point ,

= “followed by~
* = repeat 0 or more times

E.g. The regular expression describing automaton above:

[A-B , B-A]-C*-D



PROSITE

A data base of regular expression that describe
protein motifs

Developed since 1988

1999 — authors recognize that some protein
families are characterized by profiles than regular
expression and extended the data base to contain
profiles

Profiles are generated from multiple sequence
alignments



PROSITE patterns
« PROSITE fingerprints are described by regular expressions

* Rules:
— Each position 1s separated by a hyphen
— One character denotes residuum at a given position
— [...] denoted a set of allowed amino acids
— (n) denotes repeat of n times
— (n,m) denoted repeat between n and m inclusive
— X — any character
Example [EDQH]-x-K-x-[DN]-G-x-R-[GACV]
Ex. ATP/GTP binding motive [SG]-X(4)-G-K-[DT]

« There 1s a number of programs that allow to search databases
for PROSITE patterns



Finding motifs

* Method I: extracted from multiple sequence
alignment .

— EMOTIF
— PRINTS
* Method II: Gibbs sampling — a method that allows

to find motifs in the absence of multiple sequence
alignment

Reference: Lawrence,.C.E. et al (1993) Science
263, 208-214

« Method III: Exhaustive or dedicated search



Recognition of transcription factor
binding sites

* Transcription Factors = proteins that bind DNA,
typically upstream or close to the transcription
start site and regulate the expression of the gene
by activating or inhibiting the transcription
machinery

 Little 1s know about most of transcription factors it
particular what binding sites most of them are.

* Co-regulated genes — genes to which are regulated
by the same transcription factor



Typical setting for computational
finding of transcription binding sites

* Give 1s collection of regulatory regions of
genes that are believed to be co-regulated.

e Goal — fund sort DNA motifs that are
overrepresented.

* So what 1s the problem?
— Binding motifs are typically short
— They have significant variability

* There 1s a large number of other algorithms:
(AlignACE, MEME, Weeder, YMF...)



Examples of binding sites profiles
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Finding Motifs with Gibbs Sampling
Method

« Assumption: Given 1s a set of sequences that
are believed to share (one) common motif

* Motif 1s assumed to have length w

< —>

E——

Idea: Look for a signal using a Monte Carlo method



Initialization: Make a guess

* Choose randomly at each sequence a candidate
position for the motif

Our guesses (all missed) our window

— -+ ]

— e




The basic algorithm

 Initialization: Choose randomly at each
sequence a candidate position for the motif

* [terate the following two steps until
convergence:

— Predictive update: detecting current signal from
the motif 1dentified so far

— Sampling: improving the signal



Predictive update step —
leave one out

* One of N sequences, say z, 1s removed
(randomly or in specific order)

» The pattern frequencies (position specific
scoring matrix) and background
probabilities are computed with z excluded



Two evolving data structures
maintained by the algorithm

 Pattern description in the form of
probabilistic model of residue frequencies

— Qiys--- Qng; 1= 1,...w (qy, 1s the frequency of
amino-acid k on position 1 of the pattern)

— Pys--- Poo 5 background frequency
* Local alignment description
— a,,... ay; N-number of sequences;
— a.— beginning of the pattern in the i sequence



Sampling Step

Every possible sequence x of length w 1s aligned with
the profile in the window

Calculate probability O of generating x according to
probability distribution defined by current pattern
description (profile) (q;,... qirg; 1=1..W)

— e.g, probability of ATCA = q;s Qo1 93¢ aa

Calculate probability P_ of generating x according to
background probability distribution p,,... p,

Assign weight 4. = Q_/ P_to the sequence x

Choose with probability weighted by A4, the sequence x
to be aligned with current patter



Sampling Step

— s ;3

a,
z ]
1

Try all possible alignmentsof z to the profile
defined by the pattern we found so far.

*Each position i has some probability p; of being
good (if no pattern all position should be
equally likely)

*Chose fragment from i to i+w to be be aligned
to the window with probability p..

We know the

Profile of this alignment
(still no pattern found so
this profile should
correspond to random
a.a. distribution)



Why it is supposed to work

e I

d3
SR 3

Eventually a piece of motif gets intci) the windiow. This increases the
probability of getting matching motif form the next left out sequence




_] ]

Note that this one has a
good chance to fit the
pattern in the window



Finally after a number of iteration we have a good chance to
arrive to the following configuration:

11l

Now we are 1n a local maximum, W;hen we lefave one sequence out and
put it back out it has a high probability to realign where it was.

When no further improvement 1s observed we assume that have a
pattern or a part of it in the window and we try to move the window
slightly to the sides to discover the rest of the motif






High throughput sequencing technologies
(next generation sequencing)

anchor single DNA molecules to solid surface copy each molecule in situ by PCR to amplify template
DNA molecules $ GGGty ¢, ¢
are physically
bound to a
surface, and . .W?;OOOCQTAAAAGCCGTGTC

. 5- 00000000
sequenced 1n e g S @ @2 ©@ cenbciomnaos
@ D polymerase, universal primer

parallel. @@

2 - 000000 O@CATAAAAGCCGTGTC. . .
5- 000000000 remove unincorporated nucleotides

; 3-00000®®S®CATAAAAGCCGTGTC. . .
5" ooooooo‘
|

\\ detect with laser

s 3-O00OOOOOCATAAAAGCCGTGTC. ..
I ........l@) reverse termination (chemically or enzymatically)
repeat cycle 1..100 times

http://molonc.bccre.ca/wp-content/uploads/2009/09/next-gen-seq-fig-1.jpg



How this facilitates identification of binding
motifs

genomic DNA
Sequence NA fragments Search for motifs in
predicted regions ( .
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Aligning short reads

Challenge — alignment a large number of short reads

(hundreds of billions of bases total)

Programs:

-SOAP, Maq, Bowtie, RMAP, ZOOM, SHRiMP, Eland

Each tool builds a hash table of short oligomers present in either
the reads (SHR1IMP, Maq, RMAP, and ZOOM) or the reference
(SOAP).

Eland - a commercial alignment program from Illumina



Bowtie:
Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

Table 1
Table 1
Bowtie alignment performance versus SOAP and Maq
Platform CPU time Wall clock Reads mapped per Peak virtual memory footprint Bowtie R(_aads
time hour (millions) (megabytes) speed-up aligned (%)

i‘f‘gt'e Server 15m7s 15m4ls 33.8 1,149 - 67.4

SOAP DL oot 1 21 TR 10 5 13,619 351x 67.3
35s 46 s

Bowtie PC 16md4ls 17m57s 29.5 1,353 - 71.9

Magq 17048 LT RSEM 505 804 59.8x 74.7
35s 7s

Bowtie Server 17 m58s 18 m26s 28.8 1,353 - 71.9
32h56m 32 h58m

Maq 53¢ 39 0.27 804 107 x 74.7

The performance and sensitivity of Bowtie v0.9.6, SOAP v1.10, and Maq v0.6.6 when aligning 8.84 M reads from the 1,000 Genome
project (National Center for Biotechnology Information Short Read Archive: SRR001115) trimmed to 35 base pairs. The 'soap.contig'
version of the SOAP binary was used. SOAP could not be run on the PC because SOAP's memory footprint exceeds the PC's physical
memory. For the SOAP comparison, Bowtie was invoked with '-v 2' to mimic SOAP's default matching policy (which allows up to
two mismatches in the alignment and disregards quality values). For the Maq comparison Bowtie is run with its default policy,
which mimics Mag's default policy of allowing up to two mismatches during the first 28 bases and enforcing an overall limit of 70
on the sum of the quality values at all mismatched positions. To make Bowtie's memory footprint more comparable to Maqg's,
Bowtie is invoked with the '-z' option in all experiments to ensure only the forward or mirror index is resident in memory at one
time. CPU, central processing unit.

Langmead et al. Genome Biology 2009 10:R25 do0i:10.1186/gb-2009-10-3-r25




Burrows-Wheeler indexing

* originally developed within the context of data compression
* allows large texts to be searched efficiently in a small memory
footprint.



The character § is appended to T,where §$ is not in T and is lexicographically less than
all characters in T.

The Burrows-Wheeler matrix of T is constructed as the matrix whose rows comprise all
cyclic rotations of T$.

The rows are then sorted lexicographically. BWT(T) is the sequence of characters in
the rightmost column of the Burrows-Wheeler matrix

BWT(T) has the same length as the original text T.

(a) Sacaacg
aacgSac
acaacgs
caacgS$Sa
cgSacaa

T gSacaac

W(T)



This matrix has a property called 'last first (LF) mapping

The 1th occurrence of character X in the last column corresponds to the same text
character as the ith occurrence of X in the first.

(b) 5 .
. g acg aacg caacg
S g $ g S g $ g $ g
a c a c a c a c a; - —*cC
S a $ a $ a $§ ac wco$
: : a a a a a a a ™a
c c a c a c : a c a
c : c a cuszcea c a c a
g c ———C g 1 8°C g c g c



This matrix has a property called 'last first (LF) mapping

The 1th occurrence of character X in the last column corresponds to the same text
character as the ith occurrence of X in the first.

UNPERMUTE repeatedly applies the last first (LF) mapping to recover the original
text (in red on the top line) from the Burrows-Wheeler transform (in black in the

rightmost column).

(b)

cg acg aacg caacg acaacg
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EXACTMATCH algorithm calculates the range of matrix rows beginning with
successively longer suffixes of the query.

Because the matrix is sorted lexicographically, rows beginning with a

given sequence appear consecutively.

_ Ateach step of EXACTMATCH, the size of the range either shrinks or
remains the same. When the algorithm completes, rows beginning with SO (the
entire query) correspond to exact occurrences of the query in the text.

If the range is empty, the text does not contain the query.

Below steps taken by EXACTMATCH to identify the range of rows, and thus the

set of reference suffixes, prefixed by 'aac' :
no extension

aac aac aac

(c)
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Each character in a read has a numeric quality value, with lower
values indicating a higher likelihood of a sequencing error.
Bowtie alignment policy allows a limited number of mismatches
and prefers (no guarantees) alignments where the sum of the
quality values at all mismatched positions is low.



Exact

Inexact

266, 266

88, 88

177,177

390, 390

51,51

140,140

278,278

75,75

160, 160

- | 270,273

102, 103

349, 348

396, 396

396, 399

...........

278, 290

1,30

104,124

184, 184

278, 290

1,30

104, 124

184, 184

278, 290

1,30

104, 124

184, 184 | g -1

184, 184

278, 290

80, 88

167,174

240, 266

390, 396

r 1,104
by
K uress o is8
‘(/—-— 1,104
104, 184
184, 278
278, 401
¥
¥
1,104
104, 184
W—o 124, 278

278, 401

There 1s no exact match
for query 'ggta’ but there is
a one-mismatch alignment
when 'a' 1s replaced by 'g".
Boxed pairs of numbers
denote ranges of matrix
rows beginning with the
suffix observed up to that
point. A red X marks
where the algorithm
encounters an empty range
and either aborts (as in
EXACTMATCH) or
backtracks (as in the
inexact algorithm). A
green check marks where
the algorithm finds a
nonempty range delimiting
one or more occurrences
of a reportable alignment
for the query.



Tricks and heuristics

If only one error 1s allowed once can build second index for
alignment in the reverse direction and such two error free
alignments would “meet” at the position of the error

) ¢ (ammmm

The 1s there 1s error-free prefix + error + error-free postfix

This doesn’ t work for more than one error and Bowties finds
the best solution 1t can do 1n the k = 200 steps (a parameter of
the alignment, estimated experimentally ) and gives up.



Index building

« Karkkainen J: Fast BWT in small space by

blockwise suffix sorting. 7heor Comput Sci
2007, 387:249-257.



Bowtie index building performance

Actual peak memory footprint

Physical memory target (GB) Wall clock time

(GB)
16 14.4 4 h36m
8 5.84 5h5m
4 3.39 7 h 40 m
2 1.39 21 h 30 m

Performance results and memory footprints of running the Bowtie v0.9.6 indexer on the whole
human genome (National Center for Biotechnology Information build 36.3, contigs). Runs were
performed on the server platform. The indexer was run four times with different upper limits on
memory usage. See Additional data file 1 (Supplementary Discussion 3 and Supplementary Table
1) for details.

Langmead et al. Genome Biology 2009 10:R25 doi:10.1186/gb-2009-10-3-r25



Other algorithms that use BW transform

* LiH, Durbin R (2009). "Fast and accurate short read
alignment with Burrows—Wheeler Transform".
Bioinformatics.

« Li1R,etal (2009). "SOAP2: an improved ultrafast tool for
short read alignment". Bioinformatics.



RNA-Seq provides means to measure transcriptome data experimentally,

AAAAAAAA mMRNA
_ ———— or
RNA fragments i cDNA

e ———1 EST Iibrary

Applications:
-Measuring mRNA level =—=¢=—= R, hiniaion

- Uncovering intron-exon gene ' -
ATCACAGTGCGGACTCCATAARATTTTTCT
CGAAGGACCAGCAGAAACGAGAGIENR Sh a read

Structure GGACAGAGTCCCCAGCGGGCTGAAGGGG RIESRSESISE e

ATGAAACATTAAAGTCAAACAATATGAA

-Detecting transcribed isoforms - |

ORF
Coding sequence =
&g Exonic reads .. . AAAAAAAAA
De---- PR —= [——
o B N N —
. —_ s = O -~
Junction reads_ — e e e = poly(A) end reads
= _ = Mapped sequence reads
Base-resolution expression profile
M A M A 1
A " A UL SN A
f \ | \

RNA expression level

Nuclectide position

RNA-Seq: a revolutionary tool for transcriptomics
Zhong Wang, Mark Gerstein & Michael Snyder; Jan 2009

Nature Reviews | Genetics



